we love, we lie, and love lies. that's what make love beautiful..

Announcement

All of the solution will be post in comment, so anyone welcome to write the solution, the official (by me) solution will be post as soon as the problem solved.


If the problem is homework, then the official solution will post at least in the same day as it need to be submit. 00:00 is possible.



Monday, June 14, 2010

1. Misalkan $G\ $grup dengan identitas $e,$ dan $\phi :G\rightarrow G$
suatu pemeetaan yang memenuhi $\phi \left( x\right) \phi \left( y\right)
\phi \left( z\right) =\phi \left( a\right) \phi \left( b\right) \phi \left(
c\right) =e$ untuk setiap $xyz=abc=e.$ Buktikan bahwa terdapat $g\in G$ sehingga pemetaan $\varphi :G\rightarrow G$, $x\mapsto g\cdot \phi \left(
x\right) $ merupakan homomorfisma dan

(a) $\varphi \left( xy\right) =\varphi \left( x\right) \varphi \left( y\right) $
(b) $\phi \left( xy\right) =\phi \left( x\right) \cdot g\cdot \phi \left(
y\right). $

2. Misalkan $p,q$ bilangan prima dengan $q|2^{p}-1.$ Buktikan bahwa $q>p.$

3. Misalkan $A=\left[ a_{ij}\right] $ dengan $a_{ij}=c^{|i-j|}.$ Tentukan
$\det \left( A\right) .$