we love, we lie, and love lies. that's what make love beautiful..

Announcement

All of the solution will be post in comment, so anyone welcome to write the solution, the official (by me) solution will be post as soon as the problem solved.


If the problem is homework, then the official solution will post at least in the same day as it need to be submit. 00:00 is possible.



Monday, February 8, 2010

Lemma 1 - test post

For any positif real numbers $a_1,a_2,\dots,a_{n}$, and any real numbers $x_1,x_2,\dots,x_{n}$, the inequality

$$ \sum_{1\leq i,j\leq n} x_{i}x_{j}\cdot min(a_{i},a_{j})\geq 0 $$
holds.


$\Sigma$

3 comments:

  1. Emang bener ya? Itu cuma buat ngetes LaTeX doang?
    ambil ai = 1 x1 = -1000, x2 = 1, x3=1, x4=1, x5=1 juga salah... :p

    ReplyDelete
  2. bener kali, tu nggak ada syarat biar $x_i \neq x_j$ jadi pas ngitung itu $x_i x_j$ ada $n^2$ kemungkinan, cek aja.

    ReplyDelete
  3. Solusi :
    Misalkan
    $$b_i=\sum_{j=i}^n x_i$$
    maka ketaksamaan akan setara dengan
    $$a_1 b_1^2 +(a_2 -a_1)b_2^2 + \cdots +(a_n - a_{n-1})b_n^2 \geq 0$$

    ReplyDelete